

Machine Learning Model Serving made Efficient in the Cloud

Note

mosec is licensed under the Apache-2.

 [image: MOSEC]

 [image: discord invitation link]

 Reference

Reference

	CLI Arguments

	Interface

	Concept and FAQs

	Migration Guide

 CLI Arguments

CLI Arguments

python echo.py --help

usage: echo.py [-h] [--path PATH] [--capacity CAPACITY] [--timeout TIMEOUT]
 [--wait WAIT] [--address ADDRESS] [--port PORT]
 [--namespace NAMESPACE] [--debug]
 [--log-level {debug,info,warning,error}] [--dry-run]

Mosec Server Configurations

options:
 -h, --help show this help message and exit
 --path PATH Unix Domain Socket address for internal Inter-Process
 Communication.If not set, a random path will be
 created under the temporary dir. (default:
 /tmp/mosec_71c464b0)
 --capacity CAPACITY Capacity of the request queue, beyond which new
 requests will be rejected with status 429 (default:
 1024)
 --timeout TIMEOUT Service timeout for one request (milliseconds)
 (default: 3000)
 --wait WAIT [deprecated] Wait time for the batcher to batch
 (milliseconds) (default: 10)
 --address ADDRESS Address of the HTTP service (default: 0.0.0.0)
 --port PORT Port of the HTTP service (default: 8000)
 --namespace NAMESPACE
 Namespace for prometheus metrics (default:
 mosec_service)
 --debug Enable the service debug log (default: False)
 --log-level {debug,info,warning,error}
 Configure the service log level (default: info)
 --dry-run Dry run the service with provided warmup examples (if
 any). This will omit the worker number for each stage.
 (default: False)

The following arguments can be set through environment variables: (path,
capacity, timeout, address, port, namespace, debug, log_level, dry_run). Note
that the environment variable should start with `MOSEC_` with upper case. For
example: `MOSEC_PORT=8080 MOSEC_TIMEOUT=5000 python main.py`.

 Interface

Interface

Server

MOSEC server interface.

This module provides a way to define the service components for machine learning
model serving.

Dynamic Batching

The user may enable the dynamic batching feature for any stage when the
corresponding worker is appended, by setting the
append_worker(max_batch_size).

Multiprocessing

The user may spawn multiple processes for any stage when the
corresponding worker is appended, by setting the
append_worker(num).

	
class mosec.server.Server

	MOSEC server interface.

It allows users to sequentially append workers they implemented, builds
the workflow pipeline automatically and starts up the server.

	
__init__()

	Initialize a MOSEC Server.

	
register_daemon(name, proc)

	Register a daemon to be monitored.

	Parameters:

	
	name (str) – the name of this daemon

	proc (Popen) – the process handle of the daemon

	
append_worker(worker, num=1, max_batch_size=1, max_wait_time=0, start_method='spawn', env=None, timeout=0, route='/inference')

	Sequentially appends workers to the workflow pipeline.

	Parameters:

	
	worker (Type[Worker]) – the class you inherit from Worker
which implements the forward

	num (int) – the number of processes for parallel computing (>=1)

	max_batch_size (int) – the maximum batch size allowed (>=1), will enable the
dynamic batching if it > 1

	max_wait_time (int) – the maximum wait time (millisecond) for dynamic batching,
needs to be used with max_batch_size to enable the feature. If not
configure, will use the CLI argument –wait (default=10ms)

	start_method (str) – the process starting method (“spawn” or “fork”). (DO NOT
change this unless you understand the difference between them)

	env (Optional[List[Dict[str, str]]]) – the environment variables to set before starting the process

	timeout (int) – the timeout (second) for each worker forward processing (>=1)

	route (Union[str, List[str]]) – the route path for this worker. If not configured, will use the
default route path /inference. If a list is provided, different
route paths will share the same worker.

	
register_runtime(routes)

	Register the runtime to the routes.

	
run()

	Start the mosec model server.

	
mosec.server.generate_openapi(workers)

	Generate the OpenAPI specification for one pipeline.

Worker

MOSEC worker interface.

This module provides the interface to define a worker with such behaviors:

	initialize

	serialize/deserialize data to/from another worker

	serialize/deserialize data to/from the client side

	data processing

	
class mosec.worker.Worker

	MOSEC worker interface.

It provides default IPC (de)serialization methods, stores the worker
meta data including its stage and maximum batch size, and leaves the
forward method to be implemented by the users.

By default, we use JSON [https://www.json.org/] encoding. But users
are free to customize via simply overriding the deserialize method
in the first stage (we term it as ingress stage) and/or the
serialize method in the last stage (we term it as egress
stage).

For the encoding customization, there are many choices including
MessagePack [https://msgpack.org/index.html], Protocol
Buffer [https://developers.google.com/protocol-buffers] and many
other out-of-the-box protocols. Users can even define their own protocol
and use it to manipulate the raw bytes! A naive customization can be
found in this PyTorch example.

	
__init__()

	Initialize the worker.

This method doesn’t require the child class to override.

	
serialize_ipc(data)

	Define IPC serialization method.

	Parameters:

	data (Any) – returned data from forward()

	Return type:

	bytes

	
deserialize_ipc(data)

	Define IPC deserialization method.

	Parameters:

	data (bytes) – input data for forward()

	Return type:

	Any

	
property stage: str

	Return the stage name.

	
property max_batch_size: int

	Return the maximum batch size.

	
property worker_id: int

	Return the ID of this worker instance.

This property returns the worker ID in the range of [1, … , num]
(num as configured in
append_worker(num))
to differentiate workers in the same stage.

	
serialize(data)

	Serialize the last stage (egress).

Default response serialization method: JSON.

Check mosec.mixin for more information.

	Parameters:

	data (Any) – the same type as the output of the forward()

	Return type:

	bytes

	Returns:

	the bytes you want to put into the response body

	Raises:

	EncodingError – if the data cannot be serialized with JSON

	
deserialize(data)

	Deserialize the first stage (ingress).

Default request deserialization method: JSON.

Check mosec.mixin for more information.

	Parameters:

	data (bytes) – the raw bytes extracted from the request body

	Return type:

	Any

	Returns:

	the same type as the input of the forward()

	Raises:

	DecodingError – if the data cannot be deserialized with JSON

	
abstract forward(data)

	Model inference, data processing or computation logic.

	Parameters:

	data (Any) – input data to be processed

	Return type:

	Any

Must be overridden by the subclass.

If any code in this forward() needs to access other resources (e.g.
a model, a memory cache, etc.), the user should initialize these resources
as attributes of the class in the __init__.

Note

For a stage that enables dynamic batching, please return the results
that have the same length and the same order of the input data.

Note

	
	for a single-stage worker, data will go through
	<deserialize> -> <forward> -> <serialize>

	
	for a multi-stage worker that is neither ingress not egress, data
	will go through <deserialize_ipc> -> <forward> -> <serialize_ipc>

	
classmethod get_forward_json_schema(target, ref_template)

	Retrieve the JSON schema for the forward method of the class.

	Parameters:

	
	cls – The class object.

	target (ParseTarget) – The target variable to parse the schema for.

	ref_template (str) – A template to use when generating "$ref" fields.

	Return type:

	Tuple[Dict[str, Any], Dict[str, Any]]

	Returns:

	A tuple containing the schema and the component schemas.

The get_forward_json_schema() method is a class method that returns the
JSON schema for the forward() method of the cls class.
It takes a target param specifying the target to parse the schema for.

The returned value is a tuple containing the schema and the component schema.

Note

Developer must implement this function to retrieve the JSON schema
to enable openapi spec.

Note

The MOSEC_REF_TEMPLATE constant should be used as a reference
template according to openapi standards.

	
class mosec.worker.SSEWorker

	MOSEC worker with Server-Sent Events (SSE) support.

	
send_stream_event(text, index=0)

	Send a stream event to the client.

	Parameters:

	
	text (str) – the text to be sent, needs to be UTF-8 compatible

	index (int) – the index of the stream event. For the single request, this will
always be 0. For dynamic batch request, this should be the index of
the request in this batch.

Runtime

Managers to control Coordinator and Mosec process.

	
class mosec.runtime.Runtime(worker, num=1, max_batch_size=1, max_wait_time=10, timeout=3, start_method='spawn', env=None)

	The wrapper with one worker and its arguments.

	
__init__(worker, num=1, max_batch_size=1, max_wait_time=10, timeout=3, start_method='spawn', env=None)

	Initialize the mosec coordinator.

	Parameters:

	
	worker (Worker) – subclass of mosec.Worker implemented by users.

	num (int) – number of workers

	max_batch_size (int) – the maximum batch size allowed (>=1), will enable the
dynamic batching if it > 1

	max_wait_time (int) – the maximum wait time (millisecond)
for dynamic batching, needs to be used with max_batch_size
to enable the feature. If not configure, will use the CLI
argument –wait (default=10ms)

	timeout (int) – timeout (second) for the forward function.

	start_method (str) – the process starting method (“spawn” or “fork”)

	env (Optional[List[Dict[str, str]]]) – the environment variables to set before starting the process

Errors

Exceptions used in the Worker.

Suppose the input dataflow of our model server is as follows:

bytes -> deserialize -> data -> parse -> valid data

If the raw bytes cannot be successfully deserialized, the DecodingError
is raised; if the decoded data cannot pass the validation check (usually
implemented by users), the ValidationError should be raised.

	
exception mosec.errors.MosecError

	Bases: Exception

Mosec basic exception.

	
exception mosec.errors.ClientError

	Bases: MosecError

Client side error.

This error indicates that the server cannot or will not process the request
due to something that is perceived to be a client error. It will return the
details to the client side with
HTTP 400 [https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400].

	
exception mosec.errors.ServerError

	Bases: MosecError

Server side error.

This error indicates that the server encountered an unexpected condition
that prevented it from fulfilling the request. It will return the details
to the client side with
HTTP 500 [https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/500].

Attention: be careful about the returned message since it may contain some
sensitive information. If you don’t want to return the details, just raise
an exception that is not inherited from mosec.errors.MosecError.

	
exception mosec.errors.EncodingError

	Bases: ServerError

Serialization error.

The EncodingError should be raised in user-implemented codes when
the serialization for the response bytes fails. This error will set
to status code to
HTTP 500 [https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/500]
and show the details in the response.

	
exception mosec.errors.DecodingError

	Bases: ClientError

De-serialization error.

The DecodingError should be raised in user-implemented codes
when the de-serialization for the request bytes fails. This error
will set the status code to
HTTP 400 [https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400]
in the response.

	
exception mosec.errors.ValidationError

	Bases: MosecError

Request data validation error.

The ValidationError should be raised in user-implemented codes,
where the validation for the input data fails. Usually, it should be
put after the data de-serialization, which converts the raw bytes
into structured data. This error will set the status code to
HTTP 422 [https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/422]
in the response.

	
exception mosec.errors.MosecTimeoutError

	Bases: BaseException

Exception raised when a MOSEC worker operation times out.

If a bug in the forward code causes the worker to hang indefinitely, a timeout
can be used to ensure that the worker eventually returns control to the main
thread program. When a timeout occurs, the MosecTimeout exception is raised.
This exception can be caught and handled appropriately to perform any necessary
cleanup tasks or return a response indicating that the operation timed out.

Note that MosecTimeout is a subclass of BaseException, not Exception.
This is because timeouts should not be caught and handled in the same way as
other exceptions. Instead, they should be handled in a separate except block
which isn’t designed to break the working loop.

Mixins

Provide useful mixin to extend MOSEC.

	
class mosec.mixin.MsgpackMixin

	Bases: object

Msgpack worker mixin interface.

	
serialize(data)

	Serialize with msgpack for the last stage (egress).

	Parameters:

	data (Any) – the same type as returned by
Worker.forward

	Return type:

	bytes

	Returns:

	the bytes you want to put into the response body

	Raises:

	EncodingError – if the data cannot be serialized with msgpack

	
deserialize(data)

	Deserialize method for the first stage (ingress).

	Parameters:

	data (bytes) – the raw bytes extracted from the request body

	Return type:

	Any

	Returns:

	the same type as the input of
Worker.forward

	Raises:

	DecodingError – if the data cannot be deserialized with msgpack

	
class mosec.mixin.NumBinIPCMixin

	Bases: object

NumBin IPC worker mixin interface.

	
serialize_ipc(data)

	Serialize with NumBin for the IPC.

	Return type:

	bytes

	
deserialize_ipc(data)

	Deserialize with NumBin for the IPC.

	Return type:

	Any

	
class mosec.mixin.PlasmaShmIPCMixin

	Bases: Worker

Plasma shared memory worker mixin interface.

	
classmethod set_plasma_path(path)

	Set the plasma service path.

	
serialize_ipc(data)

	Save the data to the plasma server and return the id.

	Return type:

	bytes

	
deserialize_ipc(data)

	Get the data from the plasma server and delete it.

	Return type:

	Any

	
class mosec.mixin.TypedMsgPackMixin

	Bases: Worker

Enable request type validation with msgspec and serde with msgpack.

	
deserialize(data)

	Deserialize and validate request with msgspec.

	Return type:

	Any

	
serialize(data)

	Serialize with msgpack.

	Return type:

	bytes

	
classmethod get_forward_json_schema(target, ref_template)

	Get the JSON schema of the forward function.

	Return type:

	Tuple[Dict[str, Any], Dict[str, Any]]

	
class mosec.mixin.RedisShmIPCMixin

	Bases: Worker

Redis shared memory worker mixin interface.

	
classmethod set_redis_url(url)

	Set the redis service url.

	
serialize_ipc(data)

	Save the data to the redis server and return the id.

	Return type:

	bytes

	
deserialize_ipc(data)

	Get the data from the redis server and delete it.

	Return type:

	Any

 Concept and FAQs

Concept and FAQs

There are a few terms used in mosec.

	worker: a Python process that executes the forward method (inherit from mosec.Worker)

	stage: one processing unit in the pipeline, each stage contains several worker replicas

	also known as Runtime in the code

	each stage retrieves the data from the previous stage and passes the result to the next stage

	retrieved data will be deserialized by the Worker.deserialize_ipc method

	data to be passed will be serialized by the Worker.serialize_ipc method

	ingress/egress: the first/last stage in the pipeline

	ingress gets data from the client, while egress sends data to the client

	data will be deserialized by the ingress Worker.serialize method and serialized by the egress Worker.deserialize method

	pipeline: a chain of processing stages, will be registered to an endpoint (default: /inference)

	a server can have multiple pipelines, check the multi-route example

	dynamic batching: batch requests until either the max batch size or the max wait time is reached

	controller: a Rust tokio thread that works on:

	read from the previous queue to get new tasks

	send tasks to the ready-to-process worker via the Unix domain socket

	receive results from the worker

	send the tasks to the next queue

FAQs

How to raise an exception?

Use the raise keyword with mosec.errors. Raising other exceptions will be treated as an “500 Internal Server Error”.

If a request raises any exception, the error will be returned to the client directly without going through the rest stages.

How to change the serialization/deserialization methods?

Just let the ingress/egress worker inherit a suitable mixin like MsgpackMixin.

Note

The inheritance order matters in Python. Check multiple inheritance [https://docs.python.org/3/tutorial/classes.html#multiple-inheritance] for more information.

You can also implement the serialize/deserialize method to your ingress/egress worker directly.

How to share configurations among different workers?

If the configuration structure is initialized globally, all the workers should be able to use it directly.

If you want to assign different workers with different configurations, the best way is to use the env (ref append_worker).

 Migration Guide

Migration Guide

This guide will help you migrate from other frameworks to mosec.

From the Triton Inference Server

Both PyTriton [https://github.com/triton-inference-server/pytriton] and Triton Python Backend [https://github.com/triton-inference-server/python_backend] are using Triton Inference Server [https://github.com/triton-inference-server].

	mosec doesn’t require a specific client, you can use any HTTP client library

	dynamic batching is configured when calling the append_worker

	mosec doesn’t need to declare the inputs and outputs. If you want to validate the request, you can use the TypedMsgPackMixin (ref Validate Request [https://mosecorg.github.io/mosec/examples/validate.html])

Triton Python Backend

	change the TritonPythonModel class to a worker class that inherits mosec.Worker

	move the initialize method to the __init__ method in the new class

	move the execute method to the forward method in the new class

	if you still prefer to use the auto_complete_config method, you can merge it into the __init__ method

	mosec doesn’t have the corresponding finalize method as an unloading handler

	mosec doesn’t require any special model directories or configurations

	to run multiple replicas, configure the num in append_worker

PyTriton

	move the model loading logic to the __init__ method, since this happens in a different process

	move the infer_func function to the forward method

 Examples

Examples

We provide examples across different ML frameworks and for various tasks in this section.

Requirements

All the examples in this section are self-contained and tested. Feel free to grab one and run:

python model_server.py

To test the server, we use httpie [https://github.com/httpie/httpie] and httpx [https://github.com/encode/httpx] by default. You can have other choices but if you want to install them:

pip install httpie httpx

 Echo Example

Echo Example

An echo server is usually the very first server you wanna implement to get familiar with the framework.

This server sleeps for a given period and return. It is a simple illustration of how multi-stage workload is implemented. It also shows how to write a simple validation for input data.

The default JSON protocol will be used since the (de)serialization methods are not overridden in this demo. In particular, the input data of Preprocess’s forward is a dictionary decoded by JSON from the request body’s bytes; and the output dictionary of Postprocess’s forward will be JSON-encoded as a mirrored process.

echo.py

Copyright 2022 MOSEC Authors
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""Example: Sample structures for using mosec server."""

import time
from typing import List

from mosec import Server, ValidationError, Worker, get_logger

logger = get_logger()

class Preprocess(Worker):
 """Sample Class."""

 example = {"time": 0}

 def forward(self, data: dict) -> float:
 logger.debug("pre received %s", data)
 # Customized, simple input validation
 try:
 count_time = float(data["time"])
 except KeyError as err:
 raise ValidationError(f"cannot find key {err}") from err
 return count_time

class Inference(Worker):
 """Sample Class."""

 example = [0, 1e-5, 2e-4]

 def forward(self, data: List[float]) -> List[float]:
 logger.info("sleeping for %s seconds", max(data))
 time.sleep(max(data))
 return data

class Postprocess(Worker):
 """Sample Class."""

 def forward(self, data: float) -> dict:
 logger.debug("post received %f", data)
 return {"msg": f"sleep {data} seconds"}

if __name__ == "__main__":
 server = Server()
 server.append_worker(Preprocess)
 server.append_worker(Inference, max_batch_size=32)
 server.append_worker(Postprocess)
 server.run()

Start

python echo.py

Test

http :8000/inference time=1.5

 OpenAI compatible embedding service

OpenAI compatible embedding service

This example shows how to create an embedding service that is compatible with the OpenAI API [https://platform.openai.com/docs/api-reference/embeddings/object].

In this example, we use the embedding model from HuggingFace LeaderBoard [https://huggingface.co/spaces/mteb/leaderboard].

Server

EMB_MODEL=thenlper/gte-base python examples/embedding/server.py

Copyright 2023 MOSEC Authors
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""OpenAI compatible embedding server."""

import base64
import os
from typing import List, Union

import numpy as np
import torch # type: ignore
import torch.nn.functional as F # type: ignore
import transformers # type: ignore
from llmspec import EmbeddingData, EmbeddingRequest, EmbeddingResponse, TokenUsage

from mosec import ClientError, Runtime, Server, Worker

DEFAULT_MODEL = "thenlper/gte-base"

class Embedding(Worker):
 def __init__(self):
 self.model_name = os.environ.get("EMB_MODEL", DEFAULT_MODEL)
 self.tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name)
 self.model = transformers.AutoModel.from_pretrained(self.model_name)
 self.device = (
 torch.cuda.current_device() if torch.cuda.is_available() else "cpu"
)

 self.model = self.model.to(self.device)
 self.model.eval()

 def get_embedding_with_token_count(
 self, sentences: Union[str, List[Union[str, List[int]]]]
):
 # Mean Pooling - Take attention mask into account for correct averaging
 def mean_pooling(model_output, attention_mask):
 # First element of model_output contains all token embeddings
 token_embeddings = model_output[0]
 input_mask_expanded = (
 attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
)
 return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
 input_mask_expanded.sum(1), min=1e-9
)

 # Tokenize sentences
 # TODO: support `List[List[int]]` input
 encoded_input = self.tokenizer(
 sentences, padding=True, truncation=True, return_tensors="pt"
)
 inputs = encoded_input.to(self.device)
 token_count = inputs["attention_mask"].sum(dim=1).tolist()[0]
 # Compute token embeddings
 model_output = self.model(**inputs)
 # Perform pooling
 sentence_embeddings = mean_pooling(model_output, inputs["attention_mask"])
 # Normalize embeddings
 sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)

 return token_count, sentence_embeddings

 def deserialize(self, data: bytes) -> EmbeddingRequest:
 return EmbeddingRequest.from_bytes(data)

 def serialize(self, data: EmbeddingResponse) -> bytes:
 return data.to_json()

 def forward(self, data: EmbeddingRequest) -> EmbeddingResponse:
 if data.model != self.model_name:
 raise ClientError(
 f"the requested model {data.model} is not supported by "
 f"this worker {self.model_name}"
)
 token_count, embeddings = self.get_embedding_with_token_count(data.input)
 embeddings = embeddings.detach()
 if self.device != "cpu":
 embeddings = embeddings.cpu()
 embeddings = embeddings.numpy()
 if data.encoding_format == "base64":
 embeddings = [
 base64.b64encode(emb.astype(np.float32).tobytes()).decode("utf-8")
 for emb in embeddings
]
 else:
 embeddings = [emb.tolist() for emb in embeddings]

 resp = EmbeddingResponse(
 data=[
 EmbeddingData(embedding=emb, index=i)
 for i, emb in enumerate(embeddings)
],
 model=self.model_name,
 usage=TokenUsage(
 prompt_tokens=token_count,
 # No completions performed, only embeddings generated.
 completion_tokens=0,
 total_tokens=token_count,
),
)
 return resp

if __name__ == "__main__":
 server = Server()
 emb = Runtime(Embedding)
 server.register_runtime(
 {
 "/v1/embeddings": [emb],
 "/embeddings": [emb],
 }
)
 server.run()

Client

EMB_MODEL=thenlper/gte-base python examples/embedding/client.py

Copyright 2023 MOSEC Authors
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""OpenAI embedding client example."""

import os

from openai import Client

DEFAULT_MODEL = "thenlper/gte-base"

client = Client(api_key="fake", base_url="http://127.0.0.1:8000/")
emb = client.embeddings.create(
 model=os.environ.get("EMB_MODEL", DEFAULT_MODEL),
 input="Hello world!",
)
print(emb.data[0].embedding) # type: ignore

 Customized GPU Allocation

Customized GPU Allocation

This is an example demonstrating how to give different worker processes customized environment variables to control things like GPU device allocation, etc.

Assume your machine has 4 GPUs, and you hope to deploy your model to all of them to handle inference requests in parallel, maximizing your service’s throughput. With MOSEC, we provide parallel workers with customized environment variables to satisfy the needs.

As shown in the codes below, we can define our inference worker together with a list of environment variable dictionaries, each of which will be passed to the corresponding worker process. For example, if we set CUDA_VISIBLE_DEVICES to 0-3, (the same copy of) our model will be deployed on 4 different GPUs and be queried in parallel, largely improving the system’s throughput. You could verify this either from the server logs or the client response.

custom_env.py

Copyright 2022 MOSEC Authors
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""Example: Custom Environment setup"""

import os

from mosec import Server, Worker, get_logger

logger = get_logger()

class Inference(Worker):
 """Customisable inference class."""

 def __init__(self):
 super().__init__()
 # initialize your models here and allocate dedicated device to it
 device = os.environ["CUDA_VISIBLE_DEVICES"]
 logger.info("initializing model on device=%s", device)

 def forward(self, data: dict) -> dict:
 device = os.environ["CUDA_VISIBLE_DEVICES"]
 # NOTE self.worker_id is 1-indexed
 logger.info("worker=%d on device=%s is processing...", self.worker_id, device)
 return {"device": device}

if __name__ == "__main__":
 NUM_DEVICE = 4

 def _get_cuda_device(cid: int) -> dict:
 return {"CUDA_VISIBLE_DEVICES": str(cid)}

 server = Server()

 server.append_worker(
 Inference, num=NUM_DEVICE, env=[_get_cuda_device(x) for x in range(NUM_DEVICE)]
)
 server.run()

Start

python custom_env.py

Test

http :8000/inference dummy=0

 Jax jitted inference

Jax jitted inference

This example shows how to utilize the Jax framework [https://github.com/google/jax] to build a just-in-time (JIT) compiled inference server. You could install Jax following their official guide and you also need chex to run this example (pip install -U chex).

We use a single layer neural network for this minimal example. You could also experiment the speedup of JIT by setting the environment variable USE_JIT=true and observe the latency difference. Note that in the __init__ of the worker we set the self.multi_examples as a list of example inputs to warmup, because different batch sizes will trigger re-jitting when they are traced for the first time.

Server

USE_JIT=true python examples/jax_single_layer/server.py

jax_single_layer.py
Copyright 2023 MOSEC Authors
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""Example: Simple jax jitted inference with a single layer classifier."""

import os
import time
from typing import List

import chex # type: ignore
import jax # type: ignore
import jax.numpy as jnp # type: ignore

from mosec import Server, ValidationError, Worker, get_logger

logger = get_logger()

INPUT_SIZE = 3
LATENT_SIZE = 16
OUTPUT_SIZE = 2

MAX_BATCH_SIZE = 8
USE_JIT = os.environ.get("USE_JIT", "false")

class JittedInference(Worker):
 """Sample Class."""

 def __init__(self):
 super().__init__()
 key = jax.random.PRNGKey(42)
 k_1, k_2 = jax.random.split(key)
 self._layer1_w = jax.random.normal(k_1, (INPUT_SIZE, LATENT_SIZE))
 self._layer1_b = jnp.zeros(LATENT_SIZE)
 self._layer2_w = jax.random.normal(k_2, (LATENT_SIZE, OUTPUT_SIZE))
 self._layer2_b = jnp.zeros(OUTPUT_SIZE)

 # Enumerate all batch sizes for caching.
 self.multi_examples = []
 dummy_array = list(range(INPUT_SIZE))
 for i in range(MAX_BATCH_SIZE):
 self.multi_examples.append([{"array": dummy_array}] * (i + 1))

 if USE_JIT == "true":
 self.batch_forward = jax.jit(self._batch_forward)
 else:
 self.batch_forward = self._batch_forward

 def _forward(self, x_single: jnp.ndarray) -> jnp.ndarray: # type: ignore
 chex.assert_rank([x_single], [1])
 h_1 = jnp.dot(self._layer1_w.T, x_single) + self._layer1_b
 a_1 = jax.nn.relu(h_1)
 h_2 = jnp.dot(self._layer2_w.T, a_1) + self._layer2_b
 o_2 = jax.nn.softmax(h_2)
 return jnp.argmax(o_2, axis=-1)

 def _batch_forward(self, x_batch: jnp.ndarray) -> jnp.ndarray: # type: ignore
 chex.assert_rank([x_batch], [2])
 return jax.vmap(self._forward)(x_batch)

 def forward(self, data: List[dict]) -> List[dict]:
 time_start = time.perf_counter()
 try:
 input_array_raw = [ele["array"] for ele in data]
 except KeyError as err:
 raise ValidationError(f"cannot find key {err}") from err
 input_array = jnp.array(input_array_raw)
 output_array = self.batch_forward(input_array)
 output_category = output_array.tolist()
 elapse = time.perf_counter() - time_start
 return [{"category": c, "elapse": elapse} for c in output_category]

if __name__ == "__main__":
 server = Server()
 server.append_worker(JittedInference, max_batch_size=MAX_BATCH_SIZE)
 server.run()

Client

python examples/jax_single_layer/client.py

jax_single_layer_cli.py
Copyright 2023 MOSEC Authors
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""Example: Client of the Jax server."""

import random
from http import HTTPStatus

import httpx

input_data = [random.randint(-99, 99), random.randint(-99, 99), random.randint(-99, 99)]
print("Client : sending data : ", input_data)

prediction = httpx.post(
 "http://127.0.0.1:8000/inference",
 json={"array": input_data},
)
if prediction.status_code == HTTPStatus.OK:
 print(prediction.json())
else:
 print(prediction.status_code, prediction.json())

 Shared Memory IPC

Shared Memory IPC

This is an example demonstrating how you can enable the plasma shared memory store or customize your own IPC wrapper.

Mosec’s multi-stage pipeline requires the output data from the previous stage to be transferred to the next stage across python processes. This is coordinated via Unix domain socket between every Python worker process from all stages and the Rust controller process.

By default, we serialize the data and directly transfer the bytes over the socket. However, users may find wrapping this IPC useful or more efficient for specific use cases. Therefore, we provide an example implementation PlasmaShmIPCMixin based on pyarrow.plasma [https://arrow.apache.org/docs/11.0/python/plasma.html] and RedisShmIPCMixin based on redis [https://pypi.org/project/redis]. We recommend using RedisShmWrapper for better performance and longer-lasting updates.

Warning

plasma is deprecated. Please use Redis instead.

The additional subprocess can be registered as a daemon thus it will be checked by mosec regularly and trigger graceful shutdown when the daemon exits.

plasma_legacy.py

Copyright 2022 MOSEC Authors
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""Example: Using Plasma store with mosec mixin PlasmaShmIPCMixin.

We start a subprocess for the plasma server, and pass the path
to the plasma client which serves as the shm mixin.
We also register the plasma server process as a daemon, so
that when it exits the service is able to gracefully shutdown
and restarted by the orchestrator.
"""

import numpy as np
from pyarrow import plasma # type: ignore

from mosec import Server, ValidationError, Worker
from mosec.mixin import PlasmaShmIPCMixin

class DataProducer(PlasmaShmIPCMixin, Worker):
 """Sample Data Producer."""

 def forward(self, data: dict) -> np.ndarray:
 # pylint: disable=duplicate-code
 try:
 nums = np.random.rand(int(data["size"]))
 except KeyError as err:
 raise ValidationError(err) from err
 return nums

class DataConsumer(PlasmaShmIPCMixin, Worker):
 """Sample Data Consumer."""

 def forward(self, data: np.ndarray) -> dict:
 return {"ipc test data": data.tolist()}

if __name__ == "__main__":
 # 200 Mb store, adjust the size according to your requirement
 with plasma.start_plasma_store(plasma_store_memory=200 * 1000 * 1000) as (
 shm_path,
 shm_process,
):
 # configure the plasma service path
 PlasmaShmIPCMixin.set_plasma_path(shm_path)

 server = Server()
 # register this process to be monitored
 server.register_daemon("plasma_server", shm_process)
 server.append_worker(DataProducer, num=2)
 server.append_worker(DataConsumer, num=2)
 server.run()

redis.py

Copyright 2023 MOSEC Authors
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""Example: Using Redis store with mosec mixin RedisShmIPCMixin.

We start a subprocess for the Redis server, and pass the url
to the redis client which serves as the shm mixin.
We also register the redis server process as a daemon, so
that when it exits the service is able to gracefully shut down
and be restarted by the orchestrator.
"""

import subprocess

import numpy as np

from mosec import Server, ValidationError, Worker
from mosec.mixin import RedisShmIPCMixin

class DataProducer(RedisShmIPCMixin, Worker):
 """Sample Data Producer."""

 def forward(self, data: dict) -> np.ndarray:
 # pylint: disable=duplicate-code
 try:
 nums = np.random.rand(int(data["size"]))
 except KeyError as err:
 raise ValidationError(err) from err
 return nums

class DataConsumer(RedisShmIPCMixin, Worker):
 """Sample Data Consumer."""

 def forward(self, data: np.ndarray) -> dict:
 return {"ipc test data": data.tolist()}

if __name__ == "__main__":
 with subprocess.Popen(["redis-server"]) as p: # start the redis server
 # configure the redis url
 RedisShmIPCMixin.set_redis_url("redis://localhost:6379/0")

 server = Server()
 # register this process to be monitored
 server.register_daemon("redis-server", p)
 server.append_worker(DataProducer, num=2)
 server.append_worker(DataConsumer, num=2)
 server.run()

Start

python examples/shm_ipc/plasma_legacy.py

or

python examples/shm_ipc/redis.py

Test

http :8000/inference size=100

 Customized Metrics

Customized Metrics

This is an example demonstrating how to add your customized Python side Prometheus metrics.

Mosec already has the Rust side metrics, including:

	throughput for the inference endpoint

	duration for each stage (including the IPC time)

	batch size (only for the max_batch_size > 1 workers)

	number of remaining tasks to be processed

If you need to monitor more details about the inference process, you can add some Python side metrics. E.g., the inference result distribution, the duration of some CPU-bound or GPU-bound processing, the IPC time (get from rust_step_duration - python_step_duration).

This example has a simple WSGI app as the monitoring metrics service. In each worker process, the Counter will collect the inference results and export them to the metrics service. For the inference part, it parses the batch data and compares them with the average value.

For more information about the multiprocess mode for the metrics, check the Prometheus doc [https://github.com/prometheus/client_python#multiprocess-mode-eg-gunicorn].

python_side_metrics.py

Copyright 2022 MOSEC Authors
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""Example: Adding metrics service."""

import os
import pathlib
import tempfile
from typing import List

from prometheus_client import (# type: ignore
 CollectorRegistry,
 Counter,
 multiprocess,
 start_http_server,
)

from mosec import Server, ValidationError, Worker, get_logger

logger = get_logger()

check the PROMETHEUS_MULTIPROC_DIR environment variable before import Prometheus
if not os.environ.get("PROMETHEUS_MULTIPROC_DIR"):
 metric_dir_path = os.path.join(tempfile.gettempdir(), "prometheus_multiproc_dir")
 pathlib.Path(metric_dir_path).mkdir(parents=True, exist_ok=True)
 os.environ["PROMETHEUS_MULTIPROC_DIR"] = metric_dir_path

metric_registry = CollectorRegistry()
multiprocess.MultiProcessCollector(metric_registry)
counter = Counter(
 "inference_result",
 "statistic of result",
 ("status", "worker_id"),
 registry=metric_registry,
)

class Inference(Worker):
 """Sample Inference Worker."""

 def __init__(self):
 super().__init__()
 self.worker_id = str(self.worker_id)

 def deserialize(self, data: bytes) -> int:
 json_data = super().deserialize(data)
 try:
 res = int(json_data.get("num"))
 except Exception as err:
 raise ValidationError(err) from err
 return res

 def forward(self, data: List[int]) -> List[bool]:
 avg = sum(data) / len(data)
 ans = [x >= avg for x in data]
 counter.labels(status="true", worker_id=self.worker_id).inc(sum(ans))
 counter.labels(status="false", worker_id=self.worker_id).inc(
 len(ans) - sum(ans)
)
 return ans

if __name__ == "__main__":
 # Run the metrics server in another thread.
 start_http_server(5000, registry=metric_registry)

 # Run the inference server
 server = Server()
 server.append_worker(Inference, num=2, max_batch_size=8)
 server.run()

Start

python python_side_metrics.py

Test

http POST :8000/inference num=1

Check the Python side metrics

http :8080

Check the Rust side metrics

http :8000/metrics

How to build monitoring system for Mosec

In this tutorial, we will explain how to build monitoring system for Mosec, which includes Prometheus and Grafana.

Prerequisites

Before starting, you need to have Docker and Docker Compose installed on your machine. If you don’t have them installed, you can follow the instructions get-docker [https://docs.docker.com/get-docker/] and compose [https://docs.docker.com/compose/install/] to install them.

Starting the monitoring system

Clone the repository containing the docker-compose.yaml file:

git clone https://github.com/mosecorg/mosec.git

Navigate to the directory containing the docker-compose.yaml file:

cd mosec/examples/monitor

Start the monitoring system by running the following command:

docker-compose up -d

This command will start three containers: Mosec, Prometheus, and Grafana.

Test

Run test and feed metrics to Prometheus.

http POST :8000/inference num=1

Accessing Prometheus

Prometheus is a monitoring and alerting system that collects metrics from Mosec. You can access the Prometheus UI by visiting http://127.0.0.1:9090 in your web browser.

Accessing Grafana

Grafana is a visualization tool for monitoring and analyzing metrics. You can access the Grafana UI by visiting http://127.0.0.1:3000 in your web browser. The default username and password are both admin.

Stopping the monitoring system

To stop the monitoring system, run the following command:

docker-compose down

This command will stop and remove the containers created by Docker Compose.

 PyTorch Examples

PyTorch Examples

Here are some out-of-the-box model servers powered by mosec for PyTorch [https://pytorch.org/] users. We use the version 1.9.0 in the following examples.

Natural Language Processing

Natural language processing model servers usually receive text data and make predictions ranging from text classification, question answering to translation and text generation.

Sentiment Analysis

This server receives a string and predicts how positive its content is. We build the model server based on Transformers [https://github.com/huggingface/transformers] of version 4.11.0.

We show how to customize the deserialize method of the ingress stage (Preprocess) and the serialize method of the egress stage (Inference). In this way, we can enjoy the high flexibility, directly reading data bytes from request body and writing the results into response body.

Note that in a stage that enables batching (e.g. Inference in this example), its worker’s forward method deals with a list of data, while its serialize and deserialize methods only need to manipulate individual datum.

Server

python distil_bert_server_pytorch.py

distil_bert_server_pytorch.py
Copyright 2022 MOSEC Authors
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""Example: Mosec with Pytorch Distil BERT."""

from typing import Any, List

import torch # type: ignore
from transformers import (# type: ignore
 AutoModelForSequenceClassification,
 AutoTokenizer,
)

from mosec import Server, Worker, get_logger

logger = get_logger()

type alias
Returns = Any

INFERENCE_BATCH_SIZE = 32
INFERENCE_WORKER_NUM = 1

class Preprocess(Worker):
 """Preprocess BERT on current setup."""

 def __init__(self):
 super().__init__()
 self.tokenizer = AutoTokenizer.from_pretrained(
 "distilbert-base-uncased-finetuned-sst-2-english"
)

 def deserialize(self, data: bytes) -> str:
 # Override `deserialize` for the *first* stage;
 # `data` is the raw bytes from the request body
 return data.decode()

 def forward(self, data: str) -> Returns:
 tokens = self.tokenizer.encode(data, add_special_tokens=True)
 return tokens

class Inference(Worker):
 """Pytorch Inference class"""

 resp_mime_type = "text/plain"

 def __init__(self):
 super().__init__()
 self.device = (
 torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
)
 logger.info("using computing device: %s", self.device)
 self.model = AutoModelForSequenceClassification.from_pretrained(
 "distilbert-base-uncased-finetuned-sst-2-english"
)
 self.model.eval()
 self.model.to(self.device)

 # Overwrite self.example for warmup
 self.example = [
 [101, 2023, 2003, 1037, 8403, 4937, 999, 102] * 5 # make sentence longer
] * INFERENCE_BATCH_SIZE

 def forward(self, data: List[Returns]) -> List[str]:
 tensors = [torch.tensor(token) for token in data]
 with torch.no_grad():
 result = self.model(
 torch.nn.utils.rnn.pad_sequence(tensors, batch_first=True).to(
 self.device
)
)[0]
 scores = result.softmax(dim=1).cpu().tolist()
 return [f"positive={p}" for (_, p) in scores]

 def serialize(self, data: str) -> bytes:
 # Override `serialize` for the *last* stage;
 # `data` is the string from the `forward` output
 return data.encode()

if __name__ == "__main__":
 server = Server()
 server.append_worker(Preprocess, num=2 * INFERENCE_WORKER_NUM)
 server.append_worker(
 Inference, max_batch_size=INFERENCE_BATCH_SIZE, num=INFERENCE_WORKER_NUM
)
 server.run()

Client

echo 'i bought this product for many times, highly recommend' | http POST :8000/inference

Computer Vision

Computer vision model servers usually receive images or links to the images (downloading from the link becomes an I/O workload then), feed the preprocessed image data into the model and extract information like categories, bounding boxes and pixel labels as results.

Image Recognition

This server receives an image and classify it according to the ImageNet [https://www.image-net.org/] categorization. We specifically use ResNet [https://arxiv.org/abs/1512.03385] as an image classifier and build a model service based on it. Nevertheless, this file serves as the starter code for any kind of image recognition model server.

We enable multiprocessing for Preprocess stage, so that it can produce enough tasks for Inference stage to do batch inference, which better exploits the GPU computing power. More interestingly, we also started multiple model by setting the number of worker for Inference stage to 2. This is because a single model hardly fully occupy the GPU memory or utilization. Multiple models running on the same device in parallel can further increase our service throughput.

When instantiating the Server, we enable plasma_shm, which utilizes the pyarrow.plasma [https://arrow.apache.org/docs/11.0/python/plasma.html] as a shared memory data store for IPC. This could benefit the data transfer, especially when the data is large (preprocessed image data in this case). Note that you need to use pip install -U pyarrow==11 to install necessary dependencies.

We also demonstrate how to customized validation on the data content through this example. In the forward method of the Preprocess worker, we firstly check the key of the input, then try to decode the str and load it into array. If any of these steps fails, we raise the ValidationError. The status will be finally returned to our clients as HTTP 422 [https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/422].

Server

python examples/resnet50_msgpack/server.py

resnet50_server_msgpack.py
Copyright 2022 MOSEC Authors
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""Example: Sample Resnet server."""

from io import BytesIO
from typing import List
from urllib.request import urlretrieve

import numpy as np # type: ignore
import torch # type: ignore
import torchvision # type: ignore
from PIL import Image # type: ignore
from torchvision import transforms # type: ignore

from mosec import Server, ValidationError, Worker, get_logger
from mosec.mixin import MsgpackMixin

logger = get_logger()

INFERENCE_BATCH_SIZE = 16

class Preprocess(MsgpackMixin, Worker):
 """Sample Preprocess worker"""

 def __init__(self) -> None:
 super().__init__()
 trans = torch.nn.Sequential(
 transforms.Resize((256, 256)),
 transforms.CenterCrop(224),
 transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
)
 self.transform = torch.jit.script(trans) # type: ignore

 def forward(self, data: dict):
 # Customized validation for input key and field content; raise
 # ValidationError so that the client can get 422 as http status
 try:
 image = Image.open(BytesIO(data["image"]))
 except KeyError as err:
 raise ValidationError(f"cannot find key {err}") from err
 except Exception as err:
 raise ValidationError(f"cannot decode as image data: {err}") from err

 tensor = transforms.ToTensor()(image)
 data = self.transform(tensor) # type: ignore
 return data

class Inference(Worker):
 """Sample Inference worker"""

 def __init__(self):
 super().__init__()
 self.device = (
 torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
)
 logger.info("using computing device: %s", self.device)
 self.model = torchvision.models.resnet50(pretrained=True)
 self.model.eval()
 self.model.to(self.device)

 # Overwrite self.example for warmup
 self.example = [
 np.zeros((3, 244, 244), dtype=np.float32)
] * INFERENCE_BATCH_SIZE

 def forward(self, data: List[np.ndarray]) -> List[int]:
 logger.info("processing batch with size: %d", len(data))
 with torch.no_grad():
 batch = torch.stack([torch.tensor(arr, device=self.device) for arr in data])
 output = self.model(batch)
 top1 = torch.argmax(output, dim=1)
 return top1.cpu().tolist()

class Postprocess(MsgpackMixin, Worker):
 """Sample Postprocess worker"""

 def __init__(self):
 super().__init__()
 logger.info("loading categories file...")
 local_filename, _ = urlretrieve(
 "https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt"
)

 with open(local_filename, encoding="utf8") as file:
 self.categories = list(map(lambda x: x.strip(), file.readlines()))

 def forward(self, data: int) -> dict:
 return {"category": self.categories[data]}

if __name__ == "__main__":
 server = Server()
 server.append_worker(Preprocess, num=4)
 server.append_worker(Inference, num=2, max_batch_size=INFERENCE_BATCH_SIZE)
 server.append_worker(Postprocess, num=1)
 server.run()

Client

python examples/resnet50_msgpack/client.py

resnet50_client_msgpack.py
Copyright 2022 MOSEC Authors
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""Example: Sample Resnet client."""

from http import HTTPStatus

import httpx
import msgpack # type: ignore

dog_bytes = httpx.get(
 "https://raw.githubusercontent.com/pytorch/hub/master/images/dog.jpg"
).content

prediction = httpx.post(
 "http://127.0.0.1:8000/inference",
 content=msgpack.packb({"image": dog_bytes}),
)
if prediction.status_code == HTTPStatus.OK:
 print(msgpack.unpackb(prediction.content))
else:
 print(prediction.status_code, prediction.content)

 Stable Diffusion

Stable Diffusion

This example provides a demo service for stable diffusion. You can develop this in the container environment by using envd [https://github.com/tensorchord/envd]: envd up -p examples/stable_diffusion.

You should be able to try this demo under the mosec/examples/stable_diffusion/ directory.

Server

envd build -t sd:serving
docker run --rm --gpus all -p 8000:8000 sd:serving

Copyright 2023 MOSEC Authors
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

from io import BytesIO
from typing import List

import torch # type: ignore
from diffusers import StableDiffusionPipeline # type: ignore

from mosec import Server, Worker, get_logger
from mosec.mixin import MsgpackMixin

logger = get_logger()

class StableDiffusion(MsgpackMixin, Worker):
 def __init__(self):
 self.pipe = StableDiffusionPipeline.from_pretrained(
 "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
)
 device = "cuda" if torch.cuda.is_available() else "cpu"
 self.pipe = self.pipe.to(device) # type: ignore
 self.example = ["useless example prompt"] * 4 # warmup (bs=4)

 def forward(self, data: List[str]) -> List[memoryview]:
 logger.debug("generate images for %s", data)
 res = self.pipe(data) # type: ignore
 logger.debug("NSFW: %s", res[1])
 images = []
 for img in res[0]: # type: ignore
 dummy_file = BytesIO()
 img.save(dummy_file, format="JPEG") # type: ignore
 images.append(dummy_file.getbuffer())
 return images

if __name__ == "__main__":
 server = Server()
 server.append_worker(StableDiffusion, num=1, max_batch_size=4, max_wait_time=10)
 server.run()

python server.py --timeout 30000

Client

python client.py --prompt "a cute cat site on the basketball"

Copyright 2023 MOSEC Authors
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import argparse
from http import HTTPStatus

import httpx
import msgpack # type: ignore

parser = argparse.ArgumentParser(
 prog="stable diffusion client demo",
)
parser.add_argument(
 "-p", "--prompt", default="a photo of an astronaut riding a horse on mars"
)
parser.add_argument(
 "-o", "--output", default="stable_diffusion_result.jpg", help="output filename"
)
parser.add_argument(
 "--port",
 default=8000,
 type=int,
 help="service port",
)

args = parser.parse_args()
resp = httpx.post(
 f"http://127.0.0.1:{args.port}/inference",
 content=msgpack.packb(args.prompt),
 timeout=httpx.Timeout(20),
)
if resp.status_code == HTTPStatus.OK:
 data = msgpack.unpackb(resp.content)
 with open(args.output, "wb") as f:
 f.write(data)
else:
 print(f"ERROR: <{resp.status_code}> {resp.text}")

 Validate Request

Validate Request

This example shows how to use the TypedMsgPackMixin to validate the request with the help of msgspec [https://github.com/jcrist/msgspec].

Request validation can provide the following benefits:

	The client can know the exact expected data schema from the type definition.

	Validation failure will return the details of the failure reason to help the client debug.

	Ensure that the service is working on the correct data without fear.

First of all, define the request type with msgspec.Struct like:

class Request(msgspec.Struct):
 media: str
 binary: bytes

Then, apply the TypedMsgPackMixin mixin and add the type you defined to the annotation of forward(self, data):

class Inference(TypedMsgPackMixin, Worker):
 def forward(self, data: Request):
 pass

Note

If you are using dynamic batch inference as the first stage, just use the List[Request] as the annotation.

You can check the full demo code below.

Server

Copyright 2023 MOSEC Authors
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""Request validation example."""

from typing import Any, List

from msgspec import Struct

from mosec import Server, Worker
from mosec.mixin import TypedMsgPackMixin

class Request(Struct):
 """User request struct."""

 # pylint: disable=too-few-public-methods

 bin: bytes
 name: str = "test"

class Preprocess(TypedMsgPackMixin, Worker):
 """Dummy preprocess to exit early if the validation failed."""

 def forward(self, data: Request) -> Any:
 """Input will be parse as the `Request`."""
 print(f"received {data}")
 return data.bin

class Inference(TypedMsgPackMixin, Worker):
 """Dummy batch inference."""

 def forward(self, data: List[bytes]) -> List[int]:
 return [len(buf) for buf in data]

if __name__ == "__main__":
 server = Server()
 server.append_worker(Preprocess)
 server.append_worker(Inference, max_batch_size=16)
 server.run()

Client

Copyright 2023 MOSEC Authors
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

from http import HTTPStatus

import httpx
import msgpack # type: ignore

req = {
 "bin": b"hello mosec",
 "name": "type check",
}

resp = httpx.post("http://127.0.0.1:8000/inference", content=msgpack.packb(req))
if resp.status_code == HTTPStatus.OK:
 print(f"OK: {msgpack.unpackb(resp.content)}")
else:
 print(f"err[{resp.status_code}] {resp.text}")

Test

python client.py

 Development

Development

	Contributing to Mosec

 Contributing to Mosec

Contributing to Mosec

Before contributing to this repository, please first discuss the change you wish to make via issue, email, or any other method with the owners of this repository before making a change.

Pull Request Process

	After you have forked this repository, you could use make install for the first time to install the local development dependencies; afterward, you may use make dev to build the library when you have made any code changes.

	Before committing your changes, you can use make format && make lint to ensure the codes follow our style standards.

	Please add corresponding tests to your change if that’s related to new feature or API, and ensure make test can pass.

	Submit your pull request.

Contacts

	Keming

	zclzc

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mosec	

 	
 	
 mosec.errors	

 	
 	
 mosec.mixin	

 	
 	
 mosec.runtime	

 	
 	
 mosec.server	

 	
 	
 mosec.worker	

 Index

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W

_

 	
 	__init__() (mosec.runtime.Runtime method)

 	(mosec.server.Server method)

 	(mosec.worker.Worker method)

A

 	
 	append_worker() (mosec.server.Server method)

C

 	
 	ClientError

D

 	
 	DecodingError

 	deserialize() (mosec.mixin.MsgpackMixin method)

 	(mosec.mixin.TypedMsgPackMixin method)

 	(mosec.worker.Worker method)

 	
 	deserialize_ipc() (mosec.mixin.NumBinIPCMixin method)

 	(mosec.mixin.PlasmaShmIPCMixin method)

 	(mosec.mixin.RedisShmIPCMixin method)

 	(mosec.worker.Worker method)

E

 	
 	EncodingError

F

 	
 	forward() (mosec.worker.Worker method)

G

 	
 	generate_openapi() (in module mosec.server)

 	
 	get_forward_json_schema() (mosec.mixin.TypedMsgPackMixin class method)

 	(mosec.worker.Worker class method)

M

 	
 	max_batch_size (mosec.worker.Worker property)

 	
 module

 	mosec.errors

 	mosec.mixin

 	mosec.runtime

 	mosec.server

 	mosec.worker

 	
 mosec.errors

 	module

 	
 mosec.mixin

 	module

 	
 	
 mosec.runtime

 	module

 	
 mosec.server

 	module

 	
 mosec.worker

 	module

 	MosecError

 	MosecTimeoutError

 	MsgpackMixin (class in mosec.mixin)

N

 	
 	NumBinIPCMixin (class in mosec.mixin)

P

 	
 	PlasmaShmIPCMixin (class in mosec.mixin)

R

 	
 	RedisShmIPCMixin (class in mosec.mixin)

 	register_daemon() (mosec.server.Server method)

 	
 	register_runtime() (mosec.server.Server method)

 	run() (mosec.server.Server method)

 	Runtime (class in mosec.runtime)

S

 	
 	send_stream_event() (mosec.worker.SSEWorker method)

 	serialize() (mosec.mixin.MsgpackMixin method)

 	(mosec.mixin.TypedMsgPackMixin method)

 	(mosec.worker.Worker method)

 	serialize_ipc() (mosec.mixin.NumBinIPCMixin method)

 	(mosec.mixin.PlasmaShmIPCMixin method)

 	(mosec.mixin.RedisShmIPCMixin method)

 	(mosec.worker.Worker method)

 	
 	Server (class in mosec.server)

 	ServerError

 	set_plasma_path() (mosec.mixin.PlasmaShmIPCMixin class method)

 	set_redis_url() (mosec.mixin.RedisShmIPCMixin class method)

 	SSEWorker (class in mosec.worker)

 	stage (mosec.worker.Worker property)

T

 	
 	TypedMsgPackMixin (class in mosec.mixin)

V

 	
 	ValidationError

W

 	
 	Worker (class in mosec.worker)

 	
 	worker_id (mosec.worker.Worker property)

 License

License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

	Definitions.

“License” shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity
exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

“Object” form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright [2021] [Yang Keming]

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

_